Epyc fail We can defeat AMD’s virtual machine encryption, say boffins fullzbuycom, link-kingorg

Institute For Ethical Hacking Course  and  Ethical Hacking Training in Pune – India
Extreme Hacking  |  Sadik Shaikh  |  Cyber Suraksha Abhiyan
Credits: theregister
German researchers reckon they have devised a method to thwart the security mechanisms AMD’s Epyc server chips use to automatically encrypt virtual machines in memory.
So much so, they said they can exfiltrate plaintext data from an encrypted guest via a hijacked hypervisor and simple HTTP requests to a web server running in a second guest on the same machine.
AMD’s data-center processors, as well as its Ryzen Pro line, supportwhat’s called Secure Encrypted Virtualization. This decrypts and encrypts virtual machines on the fly while stored in RAM so that the host operating system, hypervisor, and any malware on the host computer, cannot snoop on protected VMs. Each virtual machine is assigned an address space ID which is linked to a cryptographic key to cipher and decipher data as it moves between memory and the CPU cores. The key never leaves the system-on-chip, and each VM gets its own key.
That means, in theory, not even a malicious or hijacked hypervisor, kernel, driver, or other privileged code, should be able to inspect the contents of a protected virtual machine, which is a good safety feature for multi-tenant cloud platforms. Now you can be sure that a BOFH isn’t peeking into your guest instance. AMD marketed SEV as a feature to stop cloud and off-premises hosts from spying on sensitive virtual machines.
However, a technique dubbed SEVered can, it is claimed, be used by a rogue host-level administrator, or malware within a hypervisor, or similar, to bypass SEV protections and copy information out of a customer or user’s virtual machine.
The problem, said Fraunhofer AISEC researchers Mathias Morbitzer, Manuel Huber, Julian Horsch and Sascha Wessel, is that miscreants at the host level can alter a guest’s physical memory mappings, using standard page tables, so that the SEV mechanism fails to properly isolate and scramble parts of the VM in RAM. Here’s the team’s outline of the attack:
With SEVered, we demonstrate that it is nevertheless possible for a malicious HV [hypervisor] to extract all memory of an SEV-encrypted VM [virtual machine] in plaintext. We base SEVered on the observation that the page-wise encryption of main memory lacks integrity protection.
While the VM’s Guest Virtual Address (GVA) to Guest Physical Address (GPA) translation is controlled by the VM itself and opaque to the HV, the HV remains responsible for the Second Level Address Translation (SLAT), meaning that it maintains the VM’s GPA to Host Physical Address (HPA) mapping in main memory. This enables us to change the memory layout of the VM in the HV. We use this capability to trick a service in the VM, such as a web server, into returning arbitrary pages of the VM in plaintext upon the request of a resource from outside.
This is not the first time eggheads have uncovered shortcomings in SEV’s ability to lock down VMs: previous studies have examined how the memory management system can be exploited by hackers to poke inside encrypted guests. Fraunhofer AISEC’s study, emitted on Thursday this week, takes this a step further, demonstrating that, indeed, the entire memory contents of a virtual machine could be pulled by a hypervisor even when SEV is active.
To show this, the researchers set up a test system powered by an AMD Epyc 7251 processor with SEV enabled and Debian GNU/Linux installed, running two services – the Apache web server, and OpenSSH – in separate virtual machines. They then modified the system’s KVM hypervisor to observe when software within a guest accessed physical RAM.
By firing lots of requests at one of the services, such as fetching a HTML webpage from Apache, the hypervisor can see which pages of physical memory are being used to hold the file. It then switches the page mappings so that an encrypted page in another virtual machine is used by Apache to send the requested webpage, and therefore sends the automatically decrypted memory page of the other VM instead.
That means Apache leaks data from another guest. Over time, the team was able to lift a full 2GB of memory from a targeted VM.
“Our evaluation shows that SEVered is feasible in practice and that it can be used to extract the entire memory from a SEV-protected VM within reasonable time,” the researchers wrote. “The results specifically show that critical aspects, such as noise during the identification and the resource stickiness are managed well by SEVered.”
A spokesperson for AMD was not available for comment. The team noted there are a few steps the chipmaker could take, though, to isolate the transition between the host and guest physical address process to mitigate the described attack.
“The best solution seems to be to provide a full-featured integrity and freshness protection of guest-pages additional to the encryption, as realized in Intel SGX. However, this likely comes with a high silicon cost to protect full VMs compared to SGX enclaves,” they explained.
“A low-cost efficient solution could be to securely combine the hash of the page’s content with the guest-assigned GPA.”
fullzbuycom link-kingorg

Author: wpadmin